How Powerful Are Graph Neural Networks Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka

Presented by Mikhail Mishin¹

¹Aalto University mikhail.mishin@aalto.fi

2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Agenda

- Intro to Graph Neural Networks (GNNs)
- Theoretical framework: Characterize GNN's discriminative power

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Propose a Maximally Powerful GNN
- Experiments
- Summary & Conclusion
- Demo & Discussion

Setup

Assume we have a graph G = (V, E)

- N(v) is the neighborhood of node v (the set of nodes adjacent to v)
- X_v is the input feature vector of node v
 - Social networks: user profile, user image
 - Biological networks: gene expression profile
 - No features: node degree, constant
- Assume the node input features are from a countable universe
- Can assign each feature vector a unique label in $\{a, b, c, ...\}$
- Feature vectors of a set of neighbouring nodes form a multiset (allows multiple instances)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Supervised Learning on Graphs

Node classification

- Given a label y_v for each node $v \in V$
- Learn an embedding h_v of v
- To help predict v's label, $y_v = f(h_v)$

Example: a drug interaction network

Supervised Learning on Graphs

Graph classification

- Given a set of graphs $\{G_1, \ldots, G_N\} \subseteq \mathcal{G}$
- And their labels $\{y_1, \ldots, y_N\} \subseteq \mathcal{Y}$
- Learn an embedding h_G of a graph G
- To help predict G's label, $y_G = g(h_G)$

Example: aromatic and heteroaromatic nitro compounds, MUTAG

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

More Graph Examples

シック 単 (中本)(中本)(日)(日)

Graph Neural Networks¹

Key idea: generate node embeddings based on local network neighborhoods

Graph Neural Networks²

Intuition: nodes aggregate information from their neighbors using neural networks

Graph Neural Networks³

Intuition: network neighborhood defines a computational graph

Graph Neural Networks⁴

- Model can be of arbitrary depth
- Nodes have embeddings at each layer
- ▶ Layer-0 embedding of node v is its input feature vector X_v
- Layer-k embedding gets information that's k hops away

⁴Leskovec, Stanford CS224W: Machine Learning with Graphs. = + < = + > = - > <

Neighborhood Aggregation⁵

- Key distinctions are in how different approaches aggregate information across layers
- The same aggregation parameters are shared for each layer

⁵Leskovec, Stanford CS224W: Machine Learning with Graphs. Example is a source of the second statement of the second statemen

Neighborhood Aggregation

Formally, the k-th layer of a GNN is:

$$a_v^{(k)} = \mathsf{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in \mathsf{N}(v) \right\} \right)$$
$$h_v^{(k)} = \mathsf{COMBINE}^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

*h*_v^(k) is the embedding of node v at the k-th iteration/layer.
 *h*_v⁽⁰⁾ = X_v, v's input feature vector

GNN Architectures: GraphSAGE⁶

AGGREGATE is formulated as:

$$a_{v}^{(k)} = \mathsf{MAX}\left(\left\{\mathsf{ReLU}\left(W_{\mathsf{pool}}^{(k)} \cdot h_{u}^{(k-1)}\right), \forall u \in N(v)\right\}\right)$$

COMBINE is formulated as:

$$h_{v}^{(k)} = W^{(k)} \cdot \text{CONCAT}\left[h_{v}^{(k-1)}, a_{v}^{(k)}\right]$$

MAX represents the element-wise max pooling operation
 W^(k)_{pool}, W^(k) are trainable matrices

⁶Hamilton, Ying, and Leskovec, "Inductive Representation Learning on Large Graphs".

GNN Architectures: Graph Convolutional Network (GCN)⁷

► AGGREGATE and COMBINE are formulated as:

$$h_{v}^{(k)} = \mathsf{ReLU}\left(W^{(k)} \cdot \mathsf{MEAN}\left\{h_{u}^{(k-1)}, \forall u \in N(v) \cup \{v\}
ight\}
ight)$$

MEAN represents the element-wise mean pooling operation
 W^(k) is a trainable matrix

⁷Kipf and Welling, "Semi-Supervised Classification with Graph Convolutional Networks".

Supervised Training⁸

Node classification: use the embedding $h_v^{(K)}$ of the final iteration for prediction

⁸Leskovec, Stanford CS224W: Machine Learning with Graphs. Example 1 and 1 an

Supervised Training

Graph classification:

Aggregate node embeddings from the final iteration with a READOUT function:

$$h_{G} = \mathsf{READOUT}\left(\left\{h_{v}^{(K)}|v \in V\right\}\right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ► E.g. READOUT = SUM or READOUT = MEAN
- Can be a more sophisticated pooling function
- To train use h_G for prediction, same as for the node classification task

Graph Isomorphism Problem

- Are two graphs topologically identical?
- Known to be in NP, no polynomial-time algorithm
- ► GNN is able to map two different graphs to different embeddings ⇒ it solves GI
- Might need a weaker criterion...

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Weisfeiler-Lehman Test of Graph Isomorphism

- ► The 1-dimensional WL test iteratively:
 - Aggregates the labels of nodes and their neighborhoods
 Hashes the aggregated labels into unique new labels

Decide two graphs are non-isomorphic if at some iteration the multisets of labels between the two graphs differ GNNs are At Most As Powerful As WL

- Key contribution 1: GNNs are at most as powerful as the WL test in distinguishing graph structures.
- GNN maps G_1 and G_2 to different embeddings \implies the WL test decides G_1 and G_2 are non-isomorphic
- See the formal proof is in the paper (Lemma 2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Maximally Powerful GNNs (MP-GNNs)

- A Maximally Powerful GNN would never map two different node neighborhoods to the same representation
- Its AGGREGATE, COMBINE, READOUT must be injective

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

MP-GNNs are As Powerful As WL

- Key contribution 2: MP-GNNs are as powerful as the WL test in distinguishing graph structures.
- ► The WL test decides G₁ and G₂ are non-isomorphic ⇒ a MP-GNN maps G₁ and G₂ to different embeddings
- Note, the proof only holds for countable sets of input node features
- See the formal proof in the paper (Theorem 3 and Lemma 4)

GNNs Learn to Embed

- WL test can only discriminate different graph structures
- GNNs learn useful node representations, capturing similarity of graph structures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

WL test provides theoretical context for GNN design

GraphSAGE is Not Maximally Powerful

AGGREGATE is formulated as:

$$a_{v}^{(k)} = \mathsf{MAX}\left(\left\{\mathsf{ReLU}\left(W_{\mathsf{pool}}^{(k)} \cdot h_{u}^{(k-1)}\right), \forall u \in \mathsf{N}(v)\right\}\right)$$

COMBINE is formulated as:

$$h_{v}^{(k)} = W^{(k)} \cdot \text{CONCAT}\left[h_{v}^{(k-1)}, a_{v}^{(k)}\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MAX is not injective

Max-Pooling Learns Sets with Distinct Elements

MAX aggregator ignores multiplicities

GCN is Not Maximally Powerful

AGGREGATE and COMBINE are formulated as:

$$h_{v}^{(k)} = \mathsf{ReLU}\left(W^{(k)} \cdot \mathsf{MEAN}\left\{h_{u}^{(k-1)}, \forall u \in \mathsf{N}(v) \cup \{v\}
ight\}
ight)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

MEAN is not injective

Mean-Pooling Learns Distributions

MEAN captures the proportion of elements of a given type

Sum is Injective

- Key contribution 3: Ranking by representational power
- SUM captures the whole multiset

SUM succeeds

Graph Isomorphism Network (GIN)

Key contribution 4: GIN is provably maximally powerful
 AGGREGATE and COMBINE are formulated as:

$$h_{v}^{(k)} = \mathsf{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_{v}^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_{u}^{(k-1)} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- MLP is Multi-Layer Perceptron
- \bullet is needed to distinguish the root/central node
- 1-layer perceptron is not enough
- See Lemma 5 and Corollary 6

Graph-Level READOUT of GIN

Concatenate graph representations across all layers of GIN

$$h_G = ext{CONCAT}\left(ext{READOUT}\left(\left\{h_V^{(k)}| v \in V
ight\}
ight)|k=0,1,\ldots K
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Node embeddings get more refined and global as the number layers increases
- Earlier layers may generalize better
- ► If READOUT=SUM, provably maximally powerful
- However READOUT=MEAN, performs better on some datasets

Experiments: Datasets

- The goal is to learn from the network structure, not to rely on input features
- Bioinformatic datasets: MUTAG, PRC, NCI1, PROTEINS
 - Graphs represent chemical compounds
 - MUTAG: aromatic and heteroaromatic nitro compounds
 - Nodes have categorial input features
- Social network datasets: COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K
 - Graphs represent social communities
 - ► IMDB: ego-network for each actor/actress, classify genre
 - REDDIT: online discussion, classify subreddit
 - Node input features: IMDB node degrees, REDDIT constant

Experiments: Models and Configurations

Evaluate GIN:

- GIN- ϵ with learning ϵ
- **GIN-0** without learning ϵ
- Evaluate less powerful versions:
 - Replace SUM with MEAN or MAX
 - Replace MLP with 1-layer perceptrons
- Apply the same graph-level READOUT:
 - SUM on bioinformatics datasets
 - MEAN on social datasets (better perfomance on test)
- For all configurations, apply 5 GNN layers (including input)
- All MLPs have 2 layers
- Apply Batch normalization on hidden layers
- Compare with state-of-the-art baselines: PATCHY-SAN, Deep Graph CNN, etc.

Experiments: Training Performance

- GIN- ϵ and GIN-0 almost perfectly fit training
- Others slightly underfit
- Observed training accuracy aligns with representational power
- WL subtree kernel has the best training accuracies

Experiments: Test Performance

	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
Datasets	# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
Baselines	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
	DCNN	49.1	33.5	-	-	52.1	67.0	61.3	56.6	62.6
	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
	DGCNN	70.0	47.8	-	-	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	-	-	-
GNN variants	SUM-MLP (GIN-0)	$\textbf{75.1} \pm \textbf{5.1}$	$\textbf{52.3} \pm \textbf{2.8}$	$\textbf{92.4} \pm \textbf{2.5}$	$\textbf{57.5} \pm \textbf{1.5}$	$\textbf{80.2} \pm \textbf{1.9}$	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	$\textbf{82.7} \pm \textbf{1.7}$
	SUM-MLP (GIN- ϵ)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	$\textbf{52.3} \pm \textbf{3.1}$	50.0 ± 0.0	20.0 ± 0.0	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	$\textbf{66.6} \pm \textbf{6.9}$	80.9 ± 1.8
	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6	-	-	-	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	-	-	-	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

- GINs outperform less powerful GNN varians
- GIN-0 slightly outperforms GIN- ϵ
- GINs shine on social network datasets
- MEAN GNNs fail to capture any structures of the unlabeled datasets (RDT-B, RDT-M5K)

TL;DR:

- POWER ability to discriminate graph structures
- ▶ Prove POWER(GNNs) ≤ POWER(WL)
- Establish conditions for POWER(GNNs) = POWER(WL)
- Show POWER(GraphSAGE) < POWER(WL) and POWER(GCN) < POWER(WL)</p>
- Propose GIN and prove POWER(GIN) = POWER(WL)
- Empirically show GIN performs better than GraphSAGE and GCN

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion⁹

Graph Convolutional Neural Networks:

- Representation learning paradigm can be extended to graphs
- Can effectively combine node attribute data with the network information
- State-of-the-art results in a number of domains/tasks
- Use end-to-end training instead of multi-stage approaches for better performance