How Powerful Are Graph Neural Networks
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka

Presented by Mikhail Mishin?

1Aalto University
mikhail.mishin@aalto.fi

2019

Agenda

vy

vvvyyy

Intro to Graph Neural Networks (GNNs)

Theoretical framework: Characterize GNN's discriminative
power

Propose a Maximally Powerful GNN
Experiments
Summary & Conclusion

Demo & Discussion

Setup

Assume we have a graph G = (V, E)
» N(v) is the neighborhood of node v (the set of nodes
adjacent to v)
» X, is the input feature vector of node v

» Social networks: user profile, user image
> Biological networks: gene expression profile
» No features: node degree, constant

» Assume the node input features are from a countable universe
» Can assign each feature vector a unique label in {a, b,c,...}

P> Feature vectors of a set of neighbouring nodes form a multiset
(allows multiple instances)

Supervised Learning on Graphs

Node classification
» Given a label y, for each node v € V
» Learn an embedding h, of v
» To help predict v's label, y, = f(hy)

Example: a drug interaction network

Safe or toxic
drug?

Supervised Learning on Graphs

Graph classification
» Given a set of graphs {Gi,...,Gy} € G
» And their labels {y1,...,yn} C Y
» Learn an embedding hg of a graph G
» To help predict G's label, yc = g(hg)

Example: aromatic and heteroaromatic nitro compounds, MUTAG

More Graph Examples

co-worker

Protein 1

Protein 5

Protein 9

Graph Neural Networks?

Key idea: generate node embeddings based on local network

neighborhoods

o

TARGET NODE

INPUT GRAPH

!Leskovec, Stanford CS224W: Machine Learning with Graphs.

Graph Neural Networks?

Intuition: nodes aggregate information from their neighbors using
neural networks

TARGET NODE

INPUT GRAPH

Neural networks

2| eskovec, Stanford CS224W: Machine Learning with Graphs.

Graph Neural Networks?
Intuition: network neighborhood defines a computational graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

¢ * * * '3 .
I\ T i =]

.~- f. .s o. .s__¢. ‘ : '. AW
A ; pd ® o * o
Yae e # P ¢, = e I
S laie®® % e%° ea e P A R X

3Leskovec, Stanford CS224W: Machine Learning with Graphs.

Graph Neural Networks®

> Model can be of arbitrary depth
> Nodes have embeddings at each layer
» Layer-0 embedding of node v is its input feature vector X,

> Layer-k embedding gets information that's k hops away

Layer-0
Layer-1 @& X/
TARGET NODE .4“ - © XC
Layer-2 . ® XA
s Lo SXE
INPUT GRAPH '.‘. i XA

*Leskovec, Stanford CS224W: Machine Learning with Graphs.

Neighborhood Aggregation®

» Key distinctions are in how different approaches aggregate
information across layers

> The same aggregation parameters are shared for each layer

TARGET NODE L. .A‘: @
| What is in the boxfg‘.....“. .
o{ 2 3 ,,,,,,,,,,,,,, rs

INPUT GRAPH

®Leskovec, Stanford CS224W: Machine Learning with Graphs.

Neighborhood Aggregation

» Formally, the k-th layer of a GNN is:

al") = AGGREGATE ({4 ™V u e N(v)})

h) = COMBINE® (0, a{)

> h\(,k) is the embedding of node v at the k-th iteration/layer.

> hs,o) = Xy, Vv's input feature vector

GNN Architectures: GraphSAGE®

» AGGREGATE is formulated as:

2l — MAX ({ReLU (W(") : hw”) Vu € N(")}>

pool u
» COMBINE is formulated as:
A — Wk . CONCAT [h(vk*”, a\(,k)}

> MAX represents the element-wise max pooling operation
> W W) are trainable matrices

pool’

®Hamilton, Ying, and Leskovec, “Inductive Representation Learning on
Large Graphs”.

GNN Architectures: Graph Convolutional Network (GCN)’

» AGGREGATE and COMBINE are formulated as:

H) = ReLu (W) - MEAN { {1 vu € N(v) U {v}})

» MEAN represents the element-wise mean pooling operation

» W) is a trainable matrix

"Kipf and Welling, “Semi-Supervised Classification with Graph
Convolutional Networks”.

Supervised Training®

Node classification: use the embedding hf,K) of the final iteration

for prediction

L= [Flog(c(z]@) + (1 —[g) log(1 — o @]8)

veV
Classification

Encoder output:
. / weights

node embedding

; Node class
S toxic drug?
are or 3XIC rug Iabel
N
'\—‘
® o0
Ny
o il
LYY XJ

8 eskovec, Stanford CS224W: Machine Learning with Graphs.

Supervised Training

Graph classification:

> Aggregate node embeddings from the final iteration with a
READOUT function:

he = READOUT ({h(VK)|v c v})

> E.g. READOUT = SUM or READOUT = MEAN
» Can be a more sophisticated pooling function

» To train use hg for prediction, same as for the node
classification task

Graph Isomorphism Problem
> Are two graphs topologically identical?
» Known to be in NP, no polynomial-time algorithm
» GNN is able to map two different graphs to different
embeddings = it solves Gl
> Might need a weaker criterion...

An isomorphism
between G and H

fla) = 1
fib) =6
flc) =8
fid) =3
flg) =5
fith) =2

Graph G Graph H

fliy =4
fli) =7

Weisfeiler-Lehman Test of Graph Isomorphism

» The 1-dimensional WL test iteratively:
> Aggregates the labels of nodes and their neighborhoods
» Hashes the aggregated labels into unique new labels

Ist iteration
Result of steps 1 and 2: multiset-label determination and sorting

@QEB QZBG"_IED
. G D | B @D,
b

Given labeled graphs G and G

Ist iteration Ist iteration
Result of step 3: label compression Result of step 4: relabeling
1" — 6 3245 —— €E<\9
23 — 41135 — N
235 —— 8 41235 —— 12
245 —— 9 5234 —— 13 ®© © G
c d

» Decide two graphs are non-isomorphic if at some iteration the
multisets of labels between the two graphs differ

GNNs are At Most As Powerful As WL

» Key contribution 1: GNNs are at most as powerful as the WL
test in distinguishing graph structures.

» GNN maps G; and Gy to different embeddings = the WL
test decides G; and G, are non-isomorphic

» See the formal proof is in the paper (Lemma 2)

/T\ 2WL hest itermtiors /’\ Captures structures
e = O 00 e

.....' . Multiset

Graph Rooted subtree GNN aggregation

Maximally Powerful GNNs (MP-GNNs)

> A Maximally Powerful GNN would never map two different
node neighborhoods to the same representation

» Its AGGREGATE, COMBINE, READOUT must be injective

2 WL test meratanures structures
® 0@

....... - oo Multiset

Graph Rooted subtree GMNMN aggregation

MP-GNNs are As Powerful As WL

» Key contribution 2: MP-GNNs are as powerful as the WL test
in distinguishing graph structures.

» The WL test decides G; and Gy are non-isomorphic = a
MP-GNN maps G; and G to different embeddings

» Note, the proof only holds for countable sets of input node
features

» See the formal proof in the paper (Theorem 3 and Lemma 4)

/T\ EWL‘ESt ﬁBIatlons A\ Cal:tures structures
.\'} = /Y\k\ — 00 @

. .'... . Multiset

Graph Rooted subtree GNN aggregation

GNNs Learn to Embed

> WL test can only discriminate different graph structures

» GNNs learn useful node representations, capturing similarity of
graph structures

> WL test provides theoretical context for GNN design

GraphSAGE is Not Maximally Powerful

» AGGREGATE is formulated as:
al) = MAX ({ReLU (W, - V) vu e N(v) })
» COMBINE is formulated as:
) — W) . CONCAT [h(vk‘l), a‘(,k)}

> MAX is not injective

Max-Pooling Learns Sets with Distinct Elements

> MAX aggregator ignores multiplicities

L N L
@ ®
N -
Input
> MAX fails

max - set

: s
A A

GCN is Not Maximally Powerful

» AGGREGATE and COMBINE are formulated as:
) = ReLU (W(k) . MEAN {h(uk*”,vu e N(v)U {v}})

> MEAN is not injective

Mean-Pooling Learns Distributions

» MEAN captures the proportion of elements of a given type
oV

® 0
® @
o0 ®
Input
» MEAN fails
T o)¢
? Vs

o
@

mean - distribution

Sum is Injective

» SUM captures the whole multiset

v
® O
L A
Input

» SUM succeeds

?
I

(a) Mean and Max both fail

sum - multiset

: ¢
- A

(b) Max fails

> Key contribution 3: Ranking by representational power

® O v
= v =
mean - distribution

max - set

? ¢
1

(c) Mean and Max both fail

Graph Isomorphism Network (GIN)

v

Key contribution 4: GIN is provably maximally powerful
AGGREGATE and COMBINE are formulated as:

v

P = MLP®) [(140} pD 4 S
ueN(v)

» MLP is Multi-Layer Perceptron

» ¢ is needed to distinguish the root/central node
» 1-layer perceptron is not enough
>

See Lemma 5 and Corollary 6

Graph-Level READOUT of GIN

v

Concatenate graph representations across all layers of GIN
he = CONCAT (READOUT ({h(vk)|v e v}) k=0,1,... K)

Node embeddings get more refined and global as the number
layers increases

Earlier layers may generalize better
If READOUT=SUM, provably maximally powerful

However READOUT=MEAN, performs better on some
datasets

Experiments: Datasets

» The goal is to learn from the network structure, not to rely on
input features

» Bioinformatic datasets: MUTAG, PRC, NCI1, PROTEINS

» Graphs represent chemical compounds
» MUTAG: aromatic and heteroaromatic nitro compounds
» Nodes have categorial input features

» Social network datasets: COLLAB, IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K

» Graphs represent social communities

> IMDB: ego-network for each actor/actress, classify genre

» REDDIT: online discussion, classify subreddit

» Node input features: IMDB - node degrees, REDDIT -
constant

Experiments: Models and Configurations

>

vvyyypy

Evaluate GIN:

» GIN-¢ with learning €
» GIN-0 without learning €

Evaluate less powerful versions:

» Replace SUM with MEAN or MAX
» Replace MLP with 1-layer perceptrons

Apply the same graph-level READOUT:

» SUM on bioinformatics datasets
» MEAN on social datasets (better perfomance on test)

For all configurations, apply 5 GNN layers (including input)
All MLPs have 2 layers
Apply Batch normalization on hidden layers

Compare with state-of-the-art baselines: PATCHY-SAN, Deep
Graph CNN, etc.

Experiments: Training Performance

Training accuracy

Training accuracy

PROTEINS

PTC

Training accuracy

Training accuracy

50 100 150 200 250 300 350
Epoch

IMDBBINARY

o 50 100 150 200 250 300 350
Epoch

REDDITBINARY

Training accuracy

50 100 150 200 250 300 350
Epoch

o 50 100 150 200 250 300 350
Epoch

50 100 150 200 250 300 350
Epoch

WL kernel and GNN variants

WL subtree kernel
—— Sum -- MLP (GIN-0)
Sum - MLP (GIN-eps)
Sum - 1-layer

Mean -- MLP
Mean — 1-layer (GCN)
—— Max - MLP

—— Max - 1-layer (GraphSAGE)

» GIN-¢ and GIN-0 almost perfectly fit training
» Others slightly underfit

» Observed training accuracy aligns with representational power

» WL subtree kernel has the best training accuracies

Experiments: Test Performance

Datasets IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NIl
2 #graphs 1000 1500 2000 5000 5000 188 113 344 4110
£ #classes 2 3 2 5 3 2 2 2 2
a Avg # nodes 19.8 13.0 429.6 508.5 745 17.9 39.1 255 29.8
WL subtree 73.8+£39 509438 81.0+£31 525+21 789x19 904+£57 75.0+3.1 599+43 86.0+18"
DCNN 49.1 335 - - 52.1 67.0 61.3 56.6 62.6
PATCHYSAN TIO+£22 452428 863+16 491407 726+22 926+42" 759+28 60.0 £4.8 786+ 1.9
DGCNN 70.0 478 - - 737 85.8 755 58.6 74.4
AWL 745459 515436 879+25 547429 739+19 879+98 - - -
SUM-MLP (GIN-0) 75051 523+£28 924+25 STSE15 802:19 894+56 762428 646170 827+17
2 SUM-MLP (GIN-) 74351 521436 922+23 ST0£17 801:19 89.0+60 759138 637182 82L7L16
E SUM-1-LAYER 741£50 522424 900+27 551+16 80619 90.0+88 762+ 2.6 63.1 £5.7 820+ 1.5
2 MEAN-MLP 737+£37 523431 500+£00 200£00 792+23 835163 755+ 34 66.6 £ 6.9 809 £ 1.8
% MEAN-1-LAYER (GCN) 740+£34 519438 500+£00 200£00 79.0+1.8 856+58 76.0 £ 3.2 642 +43 80.2+£2.0
MAx-MLP 73.2+£58 511436 - - - 84.0 £6.1 76.0+£32 64.6+102 778413
MAX-1-LAYER (GraphSAGE) 723 +53 509422 - - - 85.1+£76 759432 63.9+7.7 777£15

» GINs outperform less powerful GNN varians

» GIN-O slightly outperforms GIN-¢

» GINs shine on social network datasets

» MEAN GNNs fail to capture any structures of the unlabeled
datasets (RDT-B, RDT-M5K)

TL;:DR:

POWER - ability to discriminate graph structures
Prove POWER(GNNs) < POWER(WL)
Establish conditions for POWER(GNNs) = POWER(WL)

Show POWER(GraphSAGE) < POWER(WL) and
POWER(GCN) < POWER(WL)

Propose GIN and prove POWER(GIN) = POWER(WL)

Empirically show GIN performs better than GraphSAGE and
GCN

vvyyy

vy

Conclusion®

Graph Convolutional Neural Networks:
P> Representation learning paradigm can be extended to graphs

» Can effectively combine node attribute data with the network
information

» State-of-the-art results in a number of domains/tasks

» Use end-to-end training instead of multi-stage approaches for
better performance

%Leskovec, Stanford CS224W: Machine Learning with Graphs.

