
How Powerful Are Graph Neural Networks
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka

Presented by Mikhail Mishin1

1Aalto University
mikhail.mishin@aalto.fi

2019



Agenda

I Intro to Graph Neural Networks (GNNs)

I Theoretical framework: Characterize GNN’s discriminative
power

I Propose a Maximally Powerful GNN

I Experiments

I Summary & Conclusion

I Demo & Discussion



Setup

Assume we have a graph G = (V ,E )

I N(v) is the neighborhood of node v (the set of nodes
adjacent to v)

I Xv is the input feature vector of node v
I Social networks: user profile, user image
I Biological networks: gene expression profile
I No features: node degree, constant

I Assume the node input features are from a countable universe

I Can assign each feature vector a unique label in {a, b, c , . . . }
I Feature vectors of a set of neighbouring nodes form a multiset

(allows multiple instances)



Supervised Learning on Graphs

Node classification

I Given a label yv for each node v ∈ V

I Learn an embedding hv of v

I To help predict v ’s label, yv = f (hv )

Example: a drug interaction network



Supervised Learning on Graphs

Graph classification

I Given a set of graphs {G1, . . . ,GN} ⊆ G
I And their labels {y1, . . . , yN} ⊆ Y
I Learn an embedding hG of a graph G

I To help predict G ’s label, yG = g(hG )

Example: aromatic and heteroaromatic nitro compounds, MUTAG



More Graph Examples



Graph Neural Networks1

Key idea: generate node embeddings based on local network
neighborhoods

1Leskovec, Stanford CS224W: Machine Learning with Graphs.



Graph Neural Networks2

Intuition: nodes aggregate information from their neighbors using
neural networks

2Leskovec, Stanford CS224W: Machine Learning with Graphs.



Graph Neural Networks3

Intuition: network neighborhood defines a computational graph

3Leskovec, Stanford CS224W: Machine Learning with Graphs.



Graph Neural Networks4

I Model can be of arbitrary depth

I Nodes have embeddings at each layer

I Layer-0 embedding of node v is its input feature vector Xv

I Layer-k embedding gets information that’s k hops away

4Leskovec, Stanford CS224W: Machine Learning with Graphs.



Neighborhood Aggregation5

I Key distinctions are in how different approaches aggregate
information across layers

I The same aggregation parameters are shared for each layer

5Leskovec, Stanford CS224W: Machine Learning with Graphs.



Neighborhood Aggregation

I Formally, the k-th layer of a GNN is:

a
(k)
v = AGGREGATE(k)

({
h
(k−1)
u : u ∈ N(v)

})
h
(k)
v = COMBINE(k)

(
h
(k−1)
v , a

(k)
v

)
I h

(k)
v is the embedding of node v at the k-th iteration/layer.

I h
(0)
v = Xv , v ’s input feature vector



GNN Architectures: GraphSAGE6

I AGGREGATE is formulated as:

a
(k)
v = MAX

({
ReLU

(
W

(k)
pool · h

(k−1)
u

)
,∀u ∈ N(v)

})
I COMBINE is formulated as:

h
(k)
v = W (k) · CONCAT

[
h
(k−1)
v , a

(k)
v

]
I MAX represents the element-wise max pooling operation

I W
(k)
pool, W

(k) are trainable matrices

6Hamilton, Ying, and Leskovec, “Inductive Representation Learning on
Large Graphs”.



GNN Architectures: Graph Convolutional Network (GCN)7

I AGGREGATE and COMBINE are formulated as:

h
(k)
v = ReLU

(
W (k) ·MEAN

{
h
(k−1)
u ,∀u ∈ N(v) ∪ {v}

})
I MEAN represents the element-wise mean pooling operation

I W (k) is a trainable matrix

7Kipf and Welling, “Semi-Supervised Classification with Graph
Convolutional Networks”.



Supervised Training8

Node classification: use the embedding h
(K)
v of the final iteration

for prediction

8Leskovec, Stanford CS224W: Machine Learning with Graphs.



Supervised Training

Graph classification:

I Aggregate node embeddings from the final iteration with a
READOUT function:

hG = READOUT
({

h
(K)
v |v ∈ V

})
I E.g. READOUT = SUM or READOUT = MEAN

I Can be a more sophisticated pooling function

I To train use hG for prediction, same as for the node
classification task



Graph Isomorphism Problem
I Are two graphs topologically identical?
I Known to be in NP, no polynomial-time algorithm
I GNN is able to map two different graphs to different

embeddings =⇒ it solves GI
I Might need a weaker criterion...



Weisfeiler-Lehman Test of Graph Isomorphism

I The 1-dimensional WL test iteratively:
I Aggregates the labels of nodes and their neighborhoods
I Hashes the aggregated labels into unique new labels

I Decide two graphs are non-isomorphic if at some iteration the
multisets of labels between the two graphs differ



GNNs are At Most As Powerful As WL

I Key contribution 1: GNNs are at most as powerful as the WL
test in distinguishing graph structures.

I GNN maps G1 and G2 to different embeddings =⇒ the WL
test decides G1 and G2 are non-isomorphic

I See the formal proof is in the paper (Lemma 2)



Maximally Powerful GNNs (MP-GNNs)

I A Maximally Powerful GNN would never map two different
node neighborhoods to the same representation

I Its AGGREGATE, COMBINE, READOUT must be injective



MP-GNNs are As Powerful As WL

I Key contribution 2: MP-GNNs are as powerful as the WL test
in distinguishing graph structures.

I The WL test decides G1 and G2 are non-isomorphic =⇒ a
MP-GNN maps G1 and G2 to different embeddings

I Note, the proof only holds for countable sets of input node
features

I See the formal proof in the paper (Theorem 3 and Lemma 4)



GNNs Learn to Embed

I WL test can only discriminate different graph structures

I GNNs learn useful node representations, capturing similarity of
graph structures

I WL test provides theoretical context for GNN design



GraphSAGE is Not Maximally Powerful

I AGGREGATE is formulated as:

a
(k)
v = MAX

({
ReLU

(
W

(k)
pool · h

(k−1)
u

)
,∀u ∈ N(v)

})
I COMBINE is formulated as:

h
(k)
v = W (k) · CONCAT

[
h
(k−1)
v , a

(k)
v

]
I MAX is not injective



Max-Pooling Learns Sets with Distinct Elements

I MAX aggregator ignores multiplicities

I MAX fails



GCN is Not Maximally Powerful

I AGGREGATE and COMBINE are formulated as:

h
(k)
v = ReLU

(
W (k) ·MEAN

{
h
(k−1)
u ,∀u ∈ N(v) ∪ {v}

})
I MEAN is not injective



Mean-Pooling Learns Distributions

I MEAN captures the proportion of elements of a given type

I MEAN fails



Sum is Injective

I Key contribution 3: Ranking by representational power

I SUM captures the whole multiset

I SUM succeeds



Graph Isomorphism Network (GIN)

I Key contribution 4: GIN is provably maximally powerful

I AGGREGATE and COMBINE are formulated as:

h
(k)
v = MLP(k)

(1 + ε(k)
)
· h(k−1)v +

∑
u∈N(v)

h
(k−1)
u


I MLP is Multi-Layer Perceptron

I ε is needed to distinguish the root/central node

I 1-layer perceptron is not enough

I See Lemma 5 and Corollary 6



Graph-Level READOUT of GIN

I Concatenate graph representations across all layers of GIN

hG = CONCAT
(

READOUT
({

h
(k)
v |v ∈ V

})
|k = 0, 1, . . .K

)
I Node embeddings get more refined and global as the number

layers increases

I Earlier layers may generalize better

I If READOUT=SUM, provably maximally powerful

I However READOUT=MEAN, performs better on some
datasets



Experiments: Datasets

I The goal is to learn from the network structure, not to rely on
input features

I Bioinformatic datasets: MUTAG, PRC, NCI1, PROTEINS
I Graphs represent chemical compounds
I MUTAG: aromatic and heteroaromatic nitro compounds
I Nodes have categorial input features

I Social network datasets: COLLAB, IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K
I Graphs represent social communities
I IMDB: ego-network for each actor/actress, classify genre
I REDDIT: online discussion, classify subreddit
I Node input features: IMDB - node degrees, REDDIT -

constant



Experiments: Models and Configurations

I Evaluate GIN:
I GIN-ε with learning ε
I GIN-0 without learning ε

I Evaluate less powerful versions:
I Replace SUM with MEAN or MAX
I Replace MLP with 1-layer perceptrons

I Apply the same graph-level READOUT:
I SUM on bioinformatics datasets
I MEAN on social datasets (better perfomance on test)

I For all configurations, apply 5 GNN layers (including input)

I All MLPs have 2 layers

I Apply Batch normalization on hidden layers

I Compare with state-of-the-art baselines: PATCHY-SAN, Deep
Graph CNN, etc.



Experiments: Training Performance

I GIN-ε and GIN-0 almost perfectly fit training

I Others slightly underfit

I Observed training accuracy aligns with representational power

I WL subtree kernel has the best training accuracies



Experiments: Test Performance

I GINs outperform less powerful GNN varians

I GIN-0 slightly outperforms GIN-ε

I GINs shine on social network datasets

I MEAN GNNs fail to capture any structures of the unlabeled
datasets (RDT-B, RDT-M5K)



TL;DR:

I POWER - ability to discriminate graph structures

I Prove POWER(GNNs) ≤ POWER(WL)

I Establish conditions for POWER(GNNs) = POWER(WL)

I Show POWER(GraphSAGE) < POWER(WL) and
POWER(GCN) < POWER(WL)

I Propose GIN and prove POWER(GIN) = POWER(WL)

I Empirically show GIN performs better than GraphSAGE and
GCN



Conclusion9

Graph Convolutional Neural Networks:

I Representation learning paradigm can be extended to graphs

I Can effectively combine node attribute data with the network
information

I State-of-the-art results in a number of domains/tasks

I Use end-to-end training instead of multi-stage approaches for
better performance

9Leskovec, Stanford CS224W: Machine Learning with Graphs.


